
1932 Baseline / Marine Pollution Bulletin 58 (2009) 1922–1952
High levels of persistent organic pollutants measured in blubber
of island-associated false killer whales (Pseudorca crassidens) around
the main Hawaiian Islands
Gina M. Ylitalo a,*, Robin W. Baird b, Gladys K. Yanagida a, Daniel L. Webster b, Susan J. Chivers c,
Jennie L. Bolton a, Gregory S. Schorr b, Daniel J. McSweeney d

a NOAA Fisheries, Northwest Fisheries Science Center, Environmental Conservation Division, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
b Cascadia Research Collective, 218 ½ W. 4th Avenue, Olympia, WA 98501, USA
c NOAA Fisheries, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA
d Wild Whale Research Foundation, Box 139, Holualoa, HI 96725, USA
Persistent organic pollutants (POPs) have been measured in tis-
sues of marine mammals since the mid 1960s (Holden and Marsden,
1967; Wolman and Wilson, 1970). These compounds include several
pesticides (e.g., DDTs, chlordanes) and industrial chemicals (e.g.,
PCBs) that are ubiquitous, highly lipophilic and not readily degraded
or metabolized. As a result, they can biomagnify to high levels in li-
pid-rich tissues of top-level marine predators. POPs enter marine
waters via direct inputs (e.g., sewage outfalls, industrial and agricul-
tural runoff) as well as from indirect sources (e.g., ocean currents)
(Friedlander et al., 2005). Exposure to POPs in marine mammals
has been linked to a number of biological effects including reproduc-
tive impairment (DeLong et al., 1973; Subramanian et al., 1987), re-
duced reproductive success (Wells et al., 2005), immune
suppression (De Swart et al., 1994; Hammond et al., 2005; Ross
et al., 1995) and endocrine disruption (reviewed in O’Hara and O’Shea
(2001)). Although many POPs, such as PCBs and DDTs, have been
banned for production or use in the US for more than thirty years,
some of these compounds are still used in other regions of the world
(Fielder, 2008; van den Berk, 2009) and continue to be measured in
the tissues of marine mammals throughout coastal regions of the US.

Another class of POPs gaining the attention of environmental
scientists and managers are the polybrominated diphenyl ethers
(PBDEs). Three different PBDE technical mixtures (i.e., penta-BDE,
octa-BDE, deca-BDE) have been manufactured and added as flame
retardants to plastics, textiles, clothing, electronic circuit boards
and other materials in industrial and developing nations (de Wit,
2002). Deca-BDE is the primary commercial product produced
and used in the U.S. as a result of the sole manufacturer phasing
out the production of penta-BDE and octa-BDE (U.S. EPA, 2006).
Similar to PCBs, these compounds are lipophilic, persistent, and
tend to bioaccumulate in marine mammal tissues (de Wit et al.,
2004; Ikonomou et al., 2002a, 2002b). Some of the highest levels
of PBDEs have been measured in tissues of wildlife and humans
from North America due to high volume PBDE use in this region
of the world (Hites, 2004; Ikonomou et al., 2002b; LeBeuf et al.,
2004). Because these compounds can travel over long distances
via atmospheric transport, they have been measured in marine
organisms throughout the world, including Antarctica and the Arc-
tic (Corsolini et al., 2006; de Wit et al., 2004). Exposure to PBDEs
has been associated with a variety of biological effects (e.g., thyroid
disruption, neurobehavioral effects) in laboratory animals (de Wit,
2002) but currently no threshold levels for PBDEs have been estab-
lished for toxicological effects in marine mammals.

The main Hawaiian Islands include eight volcanic islands (i.e.,
Hawai’i, Kaho’olawe, Kauai, Lana’i, Mau’i, Moloka’i, Ni’ihua,
O’ahu) that are located in the middle of the Pacific Ocean, approx-
imately 1500 miles southwest of the contiguous US. Tourism, de-
fense and agriculture (e.g., production of raw sugar, fresh
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pineapple) are the primary contributors to the economy of this re-
gion (State of Hawaii, Dept. of Business, Economic Development
and Tourism, 2008). In addition, coastal development of the main
Hawaiian Islands is ongoing and includes conversion of agricul-
tural lands to residences and resorts, as well as expansion of harbor
facilities to accommodate large cargo and cruise ships (Friedlander
et al., 2005). Activities related to these industries and development
processes can be potential sources of POPs to this region. For exam-
ple, in the 1970’s, elevated levels of chlorinated insecticides used to
control agricultural pests and termites were reported in water,
sediment and aquatic organisms from the main Hawaiian Islands
(Bevenue et al., 1972; Tanita et al., 1976).

Around the main Hawaiian Islands, the highest trophic level
cetacean regularly encountered is the false killer whale (Pseudorca
crassidens). Based on observations of predation, individuals from
this population appear to feed primarily on large game fish such
as mahimahi (Coryphaena hippurus), yellowfin tuna (Thunnus albac-
ares) and swordfish (Xiphias gladius), some of which can be long-
lived (Baird et al., 2008). Population estimates for cetaceans within
the Hawaiian Exclusive Economic Zone (EEZ) indicate that false
killer whales may have the smallest population size of any odon-
tocete within the Hawaiian EEZ (Barlow, 2006). In addition, within
this region of Hawai’i there is evidence of population structure for
false killer whales, with genetically differentiated insular and off-
shore populations (Chivers et al., 2007).

Recently, the population of false killer whales around the main
Hawaiian Islands has been estimated at 123 individuals (CV = 0.72)
based on a photographic mark-recapture analysis (Baird et al.,
2005). There is evidence that this population may have declined
substantially over the last 20 years (Reeves et al., 2009). A number
of potential causes have been identified, including mortality in the
Hawai’i-based long-line fishery (Baird and Gorgone, 2005; Forney
and Kobayashi, 2007), reduction in their prey base, and potential
health or reproductive effects due to exposure to high levels of
POPs (Reeves et al., 2009). Although the details of life history of
false killer whales are poorly known, females appear to reach sex-
ual maturity between 8 and 14 years (Purves and Pilleri, 1978),
have long calving intervals (estimated at 6.9 years), and may reach
62.5 years (Kasuya, 1986). Males are thought to mature as much as
10 years later and live to 57.5 years (Kasuya, 1986). As a long-lived
upper-trophic level predator, false killer whales are likely to accu-
mulate high levels of POPs. Few individuals have been analyzed for
POPs, but high levels have been documented in animals that
stranded around British Columbia (Baird et al., 1989; Jarman
et al., 1996). In the present study, we report concentrations of
PBDEs and other POPs measured in biopsy samples collected from
nine individuals from the insular population to determine the
baseline levels of these contaminants and assess whether their
exposure levels to PCBs may be a risk factor for this population.

Field operations were undertaken as part of ongoing studies of
odontocetes around the main Hawaiian Islands (see Baird et al.,
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2008). In July 2008, biopsy blubber samples were collected from
nine individual false killer whales from the insular population
using a 45 kg pull Barnett RX-150 crossbow and Larsen biopsy tips,
measuring 25 mm long and 8 mm wide. A high-density foam collar
on the biopsy dart prevented penetration greater than 18 mm.
After collection, the biopsy samples were stored in a cooler with
ice packs while in the field and transferred to a �20 �C freezer
for short-term storage before being stored in a �80 �C freezer.
Biopsied individuals were photo-identified, and photographs com-
pared to each other to eliminate duplicate samples, and to the cat-
alog of Baird et al. (2008) to assess population identity and sighting
history. Age class (adult/subadult) was assessed in the field based
on relative body size and in some cases confirmed based on sight-
ing history. The sex determination of each whale was conducted
using zinc finger gene amplification (Chivers et al., 2007). Based
on photographs all individuals appeared to be ‘‘healthy” (i.e., not
emaciated).

Samples were extracted and analyzed for POPs using the gas
chromatography/mass spectrometry method of Sloan et al.
(2005). Blubber (0.1–0.3 g) was extracted with methylene chloride
using an accelerated solvent extractor after the addition of a surro-
gate standard (PCB 103; 1 ng/lL). This procedure was followed by
a clean-up step of the extract on a single stacked, gravity flow silica
gel/alumina column to remove any highly polar compounds pres-
ent in the sample. Using high-performance size exclusion liquid
chromatography, the POPs were separated from the bulk lipid
and other biogenic material present in each sample, and the
cleaned extract was analyzed for POPs using a low-resolution
quadrupole GC/MS system equipped with a 60 m DB-5 GC capillary
column and a electron impact mass spectrometer in selected ion
monitoring mode. The instrument was calibrated using sets of up
to ten multi-level calibration standards of known concentrations.
Percent lipid and lipid class profiles were determined in biopsy
blubber samples using thin-layer chromatography with flame ion-
ization detection (Ylitalo et al., 2005). In this method, each lipid ex-
tract sample was spotted on a Type SIII Chromarod and developed
in a chromatography tank containing 60:10:0.02 hexane:diethyl
ether:formic acid (v/v/v). The lipid classes were separated based
on polarity and measured using flame ionization detection. Percent
lipid values were calculated by summing the concentrations of five
lipid classes (i.e., sterol esters/wax esters, triglycerides, free fatty
acids, cholesterol, phospholipids) for each sample, using the mean
of two measurements.
Table 1
Concentrations of

P
CHLDs,

P
DDTs,

P
PCBs and

P
PBDEs measured in biopsy blubber sa

Sample ID Sex/age class Collection date Percent

RWB2008Jul26.02 Subadult – female (S) 7/26/2008 16
RWB2008Jul26.03b Subadult – male 7/26/2008 41

Mean ± SD 29 ± 18
RWB2008Jul16.01 Adult male (M) 7/16/2008 18
RWB2008Jul16.04 Adult male 7/16/2008 16

Mean ± SD 17 ± 1.4
RWB2008Jul16.03 Adult female (F) 7/16/2008 23
RWB2008Jul16.05 Adult female 7/16/2008 36
RWB2008Jul16.06 Adult female 7/16/2008 35
RWB2008Jul16.07b Adult female 7/16/2008 12
RWB2008Jul26.06 Adult female 7/26/2008 16

Mean ± SD 24 ± 11
p Valued 0.6393
Tukey–Kramer HSDe –

a Individual compounds summed are reported above.
b Mother/offspring pair.
c <LOQ for the sum indicates concentrations of all compounds included in the sum w

used to calculate the mean and standard deviation of the mean.
d Significant differences (ANOVA, p < 0.05) in POPs and lipid concentrations based o
e Unlike letters indicate significant differences using Tukey–Kramer honestly signifi
All blubber contaminant concentrations are reported in ng/g, li-
pid weight. Sum PCBs (

P
PCBs) includes the sum of congeners 17,

18, 28, 31, 33, 44, 49, 52, 66, 70, 74, 82, 87, 95, 99, 101/90, 105, 110,
118, 128, 138/163/164, 149, 151, 153/132, 156, 158, 170, 171, 177,
180, 183, 187/159/182, 191, 194, 195, 199, 205, 206, 208 and 209.
Sum DDTs (

P
DDTs) is the sum of o,p0-DDD, p,p0-DDD, o,p0-DDE,

p,p0-DDE, o,p0-DDT and p,p0-DDT. Sum chlordanes (
P

CHLDs) is
the sum of heptachlor, heptachlor epoxide, oxychlordane, gam-
ma-chlordane, nona-III-chlordane, alpha-chlordane, trans-nona-
chlor and cis-nonachlor. Sum PBDEs (

P
PBDEs) is the sum of

congeners 28, 47, 49, 66, 85, 99, 100, 153, 154 and 183. Additional
POPs analyzed in the current study include hexachlorobenzene
(HCB), b-hexachlorocyclohexane (b-HCH), aldrin, dieldrin, mirex
and endosulfan I.

As part of a performance-based quality assurance program (Slo-
an et al., 2006), a method blank and a National Institute of Stan-
dards and Technology (NIST) Standard Reference Material (SRM�

1945) were analyzed with the false killer whale blubber samples.
Concentrations of individual analytes measured in SRM� 1945
were in excellent agreement with the reference values published
by NIST. Other quality control samples met established laboratory
criteria. POP concentrations were log10(x + 1) transformed and per-
cent lipid values were arcsine square root transformed to increase
the homogeneity of variance. Analysis of variance (ANOVA) and the
Tukey–Kramer honestly significant difference test (HSD) were used
to compare mean concentrations of POPs among three age/sex
classes (subadult whales (both males and females), adult females,
adult males) (Zar, 1999). The level of significance used for all statis-
tical tests was a 6 0.05. All statistical analyses were completed
using JMP Statistical Software (SAS Institute, Inc., Cary, NC).

The most abundant POPs measured in biopsy blubber of false
killer whales from the main Hawaiian Islands were DDTs and PCBs,
with concentrations ranging from 1000 to 83000 ng/g, lipid (Table
1). PBDEs, chlordanes, b-HCH, dieldrin, HCB and mirex were also
measured in these whales but at much lower concentrations than
DDTs and PCBs (Table 1, Fig. 1). Endosulfan I and aldrin, on the
other hand, were below the LOQ for all animals analyzed in the
current study. Recent studies have reported measuring relatively
low levels of PCBs, DDTs, PBDEs and other contaminants in aquatic
organisms from the main Hawaiian Island region (Brasher and
Wolff, 2004; Kimbrough et al., 2009; Miao et al., 2001; Orazio
et al., 2003; Xu et al., 2009; Yang et al., 2008) but no data have been
previously available for false killer whales or their presumed prey.
mples of false killer whales from the main Hawaiian Islands sampled in July 2008.

lipid Lipid weight (ng/g)
P

CHLDsa P
DDTsa P

PCBsa P
PBDEsa

2900 16,000 14,000 2400
3200 23,000 24,000 2900
3100 ± 210 20,000 ± 4900 19,000 ± 7100 2700 ± 350
4100 83,000 33,000 780
4900 43,000 33,000 1600
4500 ± 570 63,000 ± 28,000 33,000 ± 0 1200 ± 580
190 1200 1000 26
1300 8300 11000 1700
430 2500 2200 120
140 1200 1100 <LOQc

310 1800 2100 260
470 ± 480 3000 ± 3000 3500 ± 4200 420 ± 720
0.0074 0.0029 0.0101 0.1832
M,F; S,F M,F; S,F M,F; S,F –

ere below their individual limits of quantitation. For each <LOQ, a value of zero was

n age class are shown in bold.
cant difference (HSD) test (p < 0.05).
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Fig. 1. Mean (±SD) concentrations of
P

PCBs and
P

DDTs (A) and
P

PBDEs HCB, b-
HCH, mirex and dieldrin (B) measured in biopsy blubber samples of adult and
subadult false killer whales from the main Hawaiian Islands. Bars with unlike
letters differ significantly; Tukey–Kramer HSD test, p < 0.05.
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Consumption of contaminated prey is the primary route of expo-
sure for marine mammals (Aguilar et al., 1999).

Age class and sex appeared to influence the concentrations of
POPs measured in the false killer whales. Mean levels of

P
CHLDs,

P
DDTs and

P
PCBs were significantly different among the three

age/sex classes of whales, with adult females having lower values
than those measured in adult males and subadults (Table 1). Sim-
ilarly, the mean PBDE concentration in adult females was lower
than those in subadults and adult males, but these differences were
not significant at a = 0.05 level (Table 1). Examination of POPs mea-
sured in blubber samples of a mother–offspring pair
(RWB2008Jul16.07 and RWB2008Jul26.03) also showed that the
levels of

P
CHLDs,

P
DDTs,

P
PCBs (Table 1) and mirex (data not

shown) were at least an order of magnitude higher in the subadult
male offspring than those measured in his mother. A number of
contaminant studies on odontocetes have also reported lower
POP levels in adult females compared to those measured in blubber
of adult males and juveniles (subadult) (Hansen et al., 2004; Til-
bury et al., 1999; Wells et al., 2005; Westgate et al., 1997; Ylitalo
et al., 2001) due to the transfer of lipids and the POPs associated
with these lipids from mother to calf during gestation and lactation
(Aguilar and Borrell, 1994; Gardner et al., 2007). In contrast, males
continue to accumulate these compounds throughout their lives.

One finding of interest in the current study was that subadult
whales had the highest mean level of

P
PBDEs measured in these

animals; however, these differences were not significant
(p = 0.1832) among the age classes of whales (Table 1). The subad-
ults also had elevated mean HCB, b-HCH and dieldrin concentra-
tions (Fig. 1) compared to those measured in adult males and
females but only dieldrin levels were significantly different
(p = 0.0496) among the age classes. In recent killer whale (Orcinus
orca) studies, higher levels of

P
PBDE, HCB and

P
HCHs have been

reported in blubber of juvenile fish-eating individuals (‘‘Southern
Residents”) compared to those determined in adult males and fe-
males from the same population (Krahn et al., 2007b, 2009). The
elevated levels of PBDEs, HCB, b-HCH and dieldrin measured in
the blubber of the subadult false killer whales may be due to differ-
ences in prey items or feeding rates, as well as variations in metab-
olism and excretion of these lipophilic compounds compared to
adults (Aguilar et al., 1999). These findings of elevated contami-
nant levels in subadult whales are a concern as these animals are
still developing biologically and may be at higher risk to deleteri-
ous effects associated with exposure to these compounds than
adults in the same population.

The percent lipid measured in the biopsy blubber samples of the
false killer whales ranged from 12–41% and contained primarily
triglycerides (>84%) and wax esters (<16%). These percent lipid val-
ues are comparable to those reported in biopsy blubber samples of
Eastern North Pacific killer whales that were analyzed by the same
quantitation method (Herman et al., 2005; Krahn et al., 2007a,b,
2009; Ylitalo et al., 2001). Similar to our findings, Litchfield et al.
(1975) reported that blubber of false killer whales contained both
wax esters (4%) and triglycerides (96%).

The mean concentrations of
P

PCBs,
P

DDTs and
P

CHLDs mea-
sured in biopsy blubber of adult male false killer whales in the
present study are much lower than those reported previously in
blubber of two adult male false killer whales (Table 2) that
stranded in British Columbia in the late 1980s (Baird et al., 1989;
Jarman et al., 1996). These findings may be due to differences in
analytical methodologies or variations in contaminant levels in
presumably ‘‘healthy” wild-ranging whales (current study) vs.
stranded animals that may have been in poor health. In addition,
it is also probable that differences in contaminant levels in feeding
ranges (waters of main Hawaiian Islands vs. west coast of North
America) and sample collection years (2008 vs. 1987/1989) as well
as variations in the ages of animals sampled also contributed to
these differences in POPs levels observed for the false killer whales
(Aguilar et al., 1999). In contrast to

P
PCBs,

P
DDTs and

P
CHLDs,

the levels of mirex – a POP used as a fire retardant and insecticide
in the US until 1978 (ASTDR, 1995) – measured in whales in the
current study were more than two times higher than those found
in the false killer whales that stranded in British Columbia (Baird
et al., 1989; Jarman et al., 1996). These differences in mirex levels
between the two whale groups may be due to the more extensive
use of this pesticide in Hawai’i (used to control mealy bugs in pine-
apple fields) compared to the west coast of North America (ASTDR,
1995; UNEP/FAO, 2005).

We compared the POPs levels measured in the current study
with those reported recently in other fish-eating marine mammal
species from the west coast of North America (Blasius and Good-
manlowe, 2008; Ikonomou et al., 2002b; Krahn et al., 2007a,b,
2009; Meng et al., 2009) because no contemporary POP data have
been published on cetaceans from the Hawaiian Island region
(O’Shea et al., 1980). Mean

P
CHLDs,

P
PCBs and

P
DDTs concen-

trations measured in the Hawaiian false killer whales were lower
than the values reported for California sea lions (Zalophus califor-
nianus) from southern California (Blasius and Goodmanlowe,
2008), offshore killer whales sampled in Alaska (Krahn et al.,
2007a) and ‘‘Southern Resident” killer whales (Krahn et al.,
2007b, 2009) but were higher than those measured in Alaskan
resident killer whales except for

P
CHLDs (Krahn et al., 2007a).

The mean level of
P

PBDEs (Table 2) measured in the Hawaiian
false killer whales was higher or comparable to those reported
in Alaskan resident killer whales (Krahn et al., 2007a) and harbor
porpoises (Phocoena phocoena) that stranded in urban harbors of
British Columbia (Ikonomou et al., 2002b) but was lower than
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the mean values measured in blubber of California sea lions that
stranded in southern California (Meng et al., 2009), as well as
Southern Resident (Krahn et al., 2007b, 2009) and offshore killer
whales (Krahn et al., 2007a). These findings were expected as off-
shores and ‘‘Southern Residents”, as well as California sea lions,
appear to spend a portion of their time feeding on fish from highly
urbanized areas (e.g., Puget Sound, Washington, central and
southern California coasts) based on observational field data and
contaminant levels and/or ratios, whereas the false killer whales,
harbor porpoises and Alaskan resident killer whales primarily
consume prey from less contaminated regions of the eastern
North Pacific (e.g., main Hawaiian Islands, Vancouver, British
Columbia, Eastern Aleutian Islands). A possible source of PBDEs
to the Hawaiian coastal region is effluent from wastewater treat-
ment plants as a number of plants discharge to the coastal ocean
in Hawai’i (Friedlander et al., 2005) and appreciable levels of these
compounds have been measured previously in wastewater efflu-
ents (de Boer et al., 2003; North, 2004). However, PBDEs may be
entering this marine ecosystem via other sources that have not
yet been identified.

Accumulation of high tissue levels of POPs has been associated
with biological and physiological effects in marine mammals
(O’Hara and O’Shea, 2001). For example, Kannan et al. (2000) rec-
ommended a safe upper PCB threshold concentration of
17,000 ng/g, lipid for PCBs in blubber based on a number of studies
that measured various toxicological endpoints (e.g., thyroid hor-
mone concentrations) and PCB concentrations. Three out of nine
animals sampled in the current study had

P
PCBs that exceeded

this threshold value. Our findings indicate that some of these ani-
mals are exposed to PCB levels that may affect their health. In addi-
tion to PCBs, these animals are also exposed to other classes of
toxic POPs that may increase their risk to adverse effects.

The current study is the first to report blubber concentrations of
POPs, including PBDEs, in free-ranging false killer whales, and the
first for any free-ranging cetaceans from the Hawaiian Islands.
Wide ranges of POP concentrations were measured in these ani-
mals, with DDTs and PCBs being the most abundant. Similar to pre-
vious cetacean studies, age class and sex influenced the levels of
POPs measured in the whales. Interestingly, subadult false killer
whales had higher levels of some classes of POPs (e.g.,

P
PBDEs,

dieldrin, HCB) compared to the other sampled animals. Although
the POP concentrations measured in the false killer whales in the
current study were generally equal to or lower than those reported
for false killer whales that stranded in British Columbia or fish-eat-
ing marine mammals from the west coast of North America, some
of the animals in the current study were exposed to PCB levels that
could potentially affect their health. Due to the small size of this
whale population and their life history strategies (e.g., long-lived,
time to maturation), continued monitoring of POPs is essential in
assessing the health and viability of these animals.
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Reasons for the alarming global coral reef destruction can often
be found on land (ISRS, 2004). Agricultural activities accompanied
by land clearing, fertilization, use of pesticides, and urbanization or
tourism expansion along with enhanced sewage and waste pro-
duction are of concern (ISRS, 2004). Rivers and groundwater carry
high loads of sediment, nutrients and other pollutants to the sea,
where they can have serious impacts on nearshore ecosystems
such as coral reefs (Cortés and Risk, 1985; Guzmán and Jiménez,
1992; Rogers, 1990; Fabricius, 2005).

While nutrients enhance coral growth in lower amounts, they
inhibit it when highly concentrated (Tomascik and Sander, 1985;
Koop et al., 2001), and accelerate the progress and severity of coral
disease (Bruno et al., 2003; Voss and Richardson, 2006). Nutrients
fuel algal growth and, combined with reduced herbivory, can be
responsible for shifts from coral- to algal-dominated reefs
(Díaz-Pulido and McCook, 2003; Hughes et al., 2003). Also bioero-
ders such as algae, sponges, worms or bivalves profit from nutrient
and organic matter increase (Risk and MacGeachy, 1978). Bored
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sediments and corals are less resistant to storms and waves, result-
ing in reef erosion (Hallock, 1988; Chazottes et al., 2002).

Suspended matter in the water column decreases transparency
and light availability. While organic material may initially be used
as an additional food source by corals, this benefit is outweighed in
turbid water, where photosynthesis and calcification are reduced
(Rogers, 1983; Anthony and Fabricius, 2000). Smothering by par-
ticulate material forces the coral to clean its surface using energy
needed for growth or reproduction (Tomascik and Sander, 1987;
Edmunds and Davies, 1989). Terrestrial runoff can become a
serious threat for reef communities and even small rivers have
been shown to influence reefs within a few kilometers distance
to their mouths (West and van Woesik, 2001; Fabricius, 2005).

The aim of this study was to evaluate the present influence of a
heavily anthropogenic impacted river on the distribution of partic-
ulate material and dissolved inorganic nutrients in the waters of a
nearby coral reef area in Costa Rica.

The Caribbean coast of Costa Rica is characterized by humid, hot
climate with year-round rains of about 6000 mm (Cortés and
Jiménez, 2003). Precipitation between December and February
and between June and August is higher compared to the rest of
the year. The largest, best-developed and most diverse reef in the
area is found in the Cahuita National Park (Cortés and León, 2002;
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